English
References of the article: “STIM1-ORAI1 direct interaction cannot govern store-operated calcium entry (SOCE) in platelets”
  1. The growing complexity of platelet aggregation

    S. P. Jackson

    Blood. 2007, 109, 5087-5095

  2. Calcium signaling in platelets

    D. VARGA-SZABO, A. BRAUN, B. NIESWANDT

    Journal of Thrombosis and Haemostasis. 2009, 7, 1057-1066

  3. Calcium signalling: IP3 rises again… and again

    C. Taylor, P. Thorn

    Current Biology. 2001, 11, R352-R355

  4. Voltage-gated calcium channels, calcium signaling, and channelopathies

    E. S. Piedras-Rentería, C. F. Barrett, Y.-Q. Cao, and R. W. Tsien

    New Comprehensive Biochemistry. 2007, 41, 127-166

  5. STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx

    J. Liou, M. Kim, W. Do Heo, J. Jones, J. Myers, J. Ferrell, T. Meyer

    Current Biology. 2005, 15, 1235-1241

  6. The STIM1/Orai signaling machinery

    M. Fahrner, I. Derler, I. Jardin, C. Romanin

    Channels. 2013, 7, 330-343

  7. Roles of Platelet STIM1 and Orai1 in Glycoprotein VI- and Thrombin-dependent Procoagulant Activity and Thrombus Formation

    K. Gilio, R. van Kruchten, A. Braun, A. Berna-Erro, M. Feijge, D. Stegner, P. van der Meijden, M. Kuijpers, D. Varga-Szabo, J. Heemskerk, B. Nieswandt

    Journal of Biological Chemistry. 2010, 285, 23629-23638

  8. Regulation of Platelet Function by Orai, STIM and TRP

    A. Berna-Erro, I. Jardín, T. Smani, and J. A. Rosado

    Calcium Entry Pathways in Non-excitable Cells. 2016, 898, 157-181

  9. Multifaceted roles of STIM proteins

    R. Hooper, E. Samakai, J. Kedra, J. Soboloff

    Pflügers Archiv - European Journal of Physiology. 2013, 465, 1383-1396

  10. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins

    S. Berlansky, C. Humer, M. Sallinger, I. Frischauf

    International Journal of Molecular Sciences. , 22, 471

  11. Essential Role for the CRAC Activation Domain in Store-dependent Oligomerization of STIM1

    E. Covington, M. Wu, R. Lewis

    Molecular Biology of the Cell. 2010, 21, 1897-1907

  12. STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1

    C. Park, P. Hoover, F. Mullins, P. Bachhawat, E. Covington, S. Raunser, T. Walz, K. Garcia, R. Dolmetsch, R. Lewis

    Cell. 2009, 136, 876-890

  13. Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum–plasma membrane junctions

    M. Wu, E. Covington, R. Lewis

    Molecular Biology of the Cell. 2014, 25, 3672-3685

  14. How strict is the correlation between STIM1 and Orai1 expression, puncta formation, and ICRAC activation?

    T. Gwozdz, J. Dutko-Gwozdz, V. Zarayskiy, K. Peter, V. Bolotina

    American Journal of Physiology-Cell Physiology. 2008, 295, C1133-C1140

  15. Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry

    M. Yen, R. Lewis

    Cell Calcium. 2019, 79, 35-43

  16. Orai, STIM1 and iPLA2β: a view from a different perspective

    V. Bolotina

    The Journal of Physiology. 2008, 586, 3035-3042

  17. Novel Role for STIM1 as a Trigger for Calcium Influx Factor Production

    P. Csutora, K. Peter, H. Kilic, K. Park, V. Zarayskiy, T. Gwozdz, V. Bolotina

    Journal of Biological Chemistry. 2008, 283, 14524-14531

  18. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling

    A. Sveshnikova, A. Balatskiy, A. Demianova, T. Shepelyuk, S. Shakhidzhanov, M. Balatskaya, A. Pichugin, F. Ataullakhanov, M. Panteleev

    Journal of Thrombosis and Haemostasis. 2016, 14, 2045-2057

  19. Systems Modeling of Ca2+ Homeostasis and Mobilization in Platelets Mediated by IP3 and Store-Operated Ca2+ Entry

    A. Dolan, S. Diamond

    Biophysical Journal. 2014, 106, 2049-2060

  20. Reaction-diffusion model for STIM-ORAI interaction: The role of ROS and mutations

    B. Schmidt, D. Alansary, I. Bogeski, B. Niemeyer, H. Rieger

    Journal of Theoretical Biology. 2019, 470, 64-75

  21. Models of Solute Aggregation Using Cellular Automata

    L. Kier, C. Cheng, J. Nelson

    Chemistry & Biodiversity. 2009, 6, 396-401

  22. Applied Biophysics: A Molecular Approach for Physical Scientists

    T. A. Waigh

    Applied Biophysics. 2007, ,

  23. Dynamic Coupling of the Putative Coiled-coil Domain of ORAI1 with STIM1 Mediates ORAI1 Channel Activation

    M. Muik, I. Frischauf, I. Derler, M. Fahrner, J. Bergsmann, P. Eder, R. Schindl, C. Hesch, B. Polzinger, R. Fritsch, H. Kahr, J. Madl, H. Gruber, K. Groschner, C. Romanin

    Journal of Biological Chemistry. 2008, 283, 8014-8022

  24. Cross-linking of Orai1 channels by STIM proteins

    Y. Zhou, R. Nwokonko, X. Cai, N. Loktionova, R. Abdulqadir, P. Xin, B. Niemeyer, Y. Wang, M. Trebak, D. Gill

    Proceedings of the National Academy of Sciences. 2018, 115, E3398-E3407

  25. Is calcium-independent phospholipase A2required for store-operated calcium entry in human platelets?

    M. HARPER, S. SAGE

    Journal of Thrombosis and Haemostasis. 2008, 6, 1819-1821

  26. STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets

    C. Galán, H. Zbidi, A. Bartegi, G. Salido, J. Rosado

    Archives of Biochemistry and Biophysics. 2009, 490, 137-144

  27. TRPC Channels in the SOCE Scenario

    J. Lopez, I. Jardin, J. Sanchez-Collado, G. Salido, T. Smani, J. Rosado

    Cells. 2020, 9, 126