Arterial thrombosis—insidious, unpredictable and deadly
S. Jackson
Nature Medicine. 2011, 17, 1423-1436
Murine Models of Vascular Thrombosis
R. Westrick, M. Winn, D. Eitzman
Arteriosclerosis, Thrombosis, and Vascular Biology. 2007, 27, 2079-2093
High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond
S. Brouns, J. van Geffen, J. Heemskerk
Platelets. 2018, 29, 662-669
The use of microfluidics in hemostasis
K. Neeves, A. Onasoga, A. Wufsus
Current Opinion in Hematology. 2013, 20, 417-423
Subcommittee on Biorheology. In vitro flow‐based assay: From simple toward more sophisticated models for mimicking hemostasis and thrombosis.
5. Mangin PH, Neeves KB, Lam WA, Cosemans JM, Korin N, Kerrigan SW, Panteleev MA
Journal of Thrombosis and Haemostasis. 2021, 19, 582-7
In Silico Hemostasis Modeling and Prediction
D. Nechipurenko, A. Shibeko, A. Sveshnikova, M. Panteleev
Hämostaseologie. 2020, 40, 524-535
Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates
K. NEEVES, S. MALONEY, K. FONG, A. SCHMAIER, M. KAHN, L. BRASS, S. DIAMOND
Journal of Thrombosis and Haemostasis. 2008, 6, 2193-2201
Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient
R. Muthard, S. Diamond
Lab on a Chip. 2013, 13, 1883
Tissue‐engineered 3D microvessel and capillary network models for the study of vascular phenomena
M. Bogorad, J. DeStefano, A. Wong, P. Searson
Microcirculation. 2017, 24,
Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms
S. Ahn, Y. Sei, H. Park, J. Kim, Y. Ryu, J. Choi, H. Sung, T. MacDonald, A. Levey, Y. Kim
Nature Communications. 2020, 11,
Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues
R. Xie, W. Zheng, L. Guan, Y. Ai, Q. Liang
Small. 2020, 16, 1902838
Bioprinted thrombosis-on-a-chip
Y. Zhang, F. Davoudi, P. Walch, A. Manbachi, X. Luo, V. Dell'Erba, A. Miri, H. Albadawi, A. Arneri, X. Li, X. Wang, M. Dokmeci, A. Khademhosseini, R. Oklu
Lab on a Chip. , 16, 4097-4105
Pharmacological Blockade of Glycoprotein VI Promotes Thrombus Disaggregation in the Absence of Thrombin
M. Ahmed, V. Kaneva, S. Loyau, D. Nechipurenko, N. Receveur, M. Le Bris, E. Janus-Bell, M. Didelot, A. Rauch, S. Susen, N. Chakfé, F. Lanza, E. Gardiner, R. Andrews, M. Panteleev, C. Gachet, M. Jandrot-Perrus, P. Mangin
Arteriosclerosis, Thrombosis, and Vascular Biology. 2020, 40, 2127-2142
Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface
D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev
Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47
Core and shell platelets of a thrombus: A new microfluidic assay to study mechanics and biochemistry
M. DeCortin, L. Brass, S. Diamond
Research and Practice in Thrombosis and Haemostasis. 2020, 4, 1158-1166
Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting
N. Podoplelova, A. Sveshnikova, Y. Kotova, A. Eckly, N. Receveur, D. Nechipurenko, S. Obydennyi, I. Kireev, C. Gachet, F. Ataullakhanov, P. Mangin, M. Panteleev
Blood. 2016, 128, 1745-1755
Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow
F. Swieringa, C. Baaten, R. Verdoold, T. Mastenbroek, N. Rijnveld, K. van der Laan, E. Breel, P. Collins, M. Lancé, Y. Henskens, J. Cosemans, J. Heemskerk, P. van der Meijden
Arteriosclerosis, Thrombosis, and Vascular Biology. 2016, 36, 692-699
Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions
J. Cosemans, M. Kuijpers, C. Lecut, S. Loubele, S. Heeneman, M. Jandrot-Perrus, J. Heemskerk
Atherosclerosis. 2005, 181, 19-27
Identification of platelet function defects by multi-parameter assessment of thrombus formation
S. de Witt, F. Swieringa, R. Cavill, M. Lamers, R. van Kruchten, T. Mastenbroek, C. Baaten, S. Coort, N. Pugh, A. Schulz, I. Scharrer, K. Jurk, B. Zieger, K. Clemetson, R. Farndale, J. Heemskerk, J. Cosemans
Nature Communications. 2014, 5,
Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner
E. Westein, A. van der Meer, M. Kuijpers, J. Frimat, A. van den Berg, J. Heemskerk
Proceedings of the National Academy of Sciences. 2013, 110, 1357-1362
A shear gradient–dependent platelet aggregation mechanism drives thrombus formation
W. Nesbitt, E. Westein, F. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, S. Jackson
Nature Medicine. 2009, 15, 665-673
Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a von Willebrand factor-dependent manner.
Receveur, Nicolas, Dmitry Nechipurenko, Yannick Knapp, Aleksandra Yakusheva, Eric Maurer, Cécile V. Denis, François Lanza, Mikhail Panteleev, Christian Gachet, and Pierre H. Mangin.
Haematologica. 2020, 105,
Thrombin Flux and Wall Shear Rate Regulate Fibrin Fiber Deposition State during Polymerization under Flow
K. Neeves, D. Illing, S. Diamond
Biophysical Journal. 2010, 98, 1344-1352
Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces
A. Onasoga-Jarvis, T. Puls, S. O'Brien, L. Kuang, H. Liang, K. Neeves
Journal of Thrombosis and Haemostasis. 2014, 12, 373-382
Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear
V. Govindarajan, S. Zhu, R. Li, Y. Lu, S. Diamond, J. Reifman, A. Mitrophanov
Biophysical Journal. 2018, 114, 978-991
Dynamics of Blood Flow and Thrombus Formation in a Multi-Bypass Microfluidic Ladder Network
J. Zilberman-Rudenko, J. Sylman, H. Lakshmanan, O. McCarty, J. Maddala
Cellular and Molecular Bioengineering. 2017, 10, 16-29
High Shear Thrombus Formation under Pulsatile and Steady Flow
L. Casa, D. Ku
Cardiovascular Engineering and Technology. 2014, 5, 154-163
The influence of the pulsatility of the blood flow on the extent of platelet adhesion.
Zhao XM, Wu YP, Cai HX, Wei R, Lisman T, Han JJ, Xia ZL, de Groot PG
Thrombosis research. 2008, 121, 821-5
A novel mouse-driven ex vivo flow chamber for the study of leukocyte and platelet function
A. Hafezi-Moghadam, K. Thomas, C. Cornelssen
American Journal of Physiology-Cell Physiology. 2004, 286, C876-C892
Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI–Dependent Manner in an In Vitro Venous Thrombosis Model
M. Lehmann, R. Schoeman, P. Krohl, A. Wallbank, J. Samaniuk, M. Jandrot-Perrus, K. Neeves
Arteriosclerosis, Thrombosis, and Vascular Biology. 2018, 38, 1052-1062
Point-of-Care Diagnostic Assays and Novel Preclinical Technologies for Hemostasis and Thrombosis
C. Caruso, W. Lam
Seminars in Thrombosis and Hemostasis. 2021, 47, 120-128
A Microfluidic Model of Hemostasis Sensitive to Platelet Function and Coagulation
R. Schoeman, K. Rana, N. Danes, M. Lehmann, J. Di Paola, A. Fogelson, K. Leiderman, K. Neeves
Cellular and Molecular Bioengineering. 2017, 10, 3-15
A microengineered vascularized bleeding model that integrates the principal components of hemostasis
Y. Sakurai, E. Hardy, B. Ahn, R. Tran, M. Fay, J. Ciciliano, R. Mannino, D. Myers, Y. Qiu, M. Carden, W. Baldwin, S. Meeks, G. Gilbert, S. Jobe, W. Lam
Nature Communications. 2018, 9,
A Human Vascular Injury‐on‐a‐Chip Model of Hemostasis
I. Poventud‐Fuentes, K. Kwon, J. Seo, M. Tomaiuolo, T. Stalker, L. Brass, D. Huh
Small. 2021, 17, 2004889