English
References of the article: “Patch-clamp technique for studying ion channels in activated platelets”
  1. Dye indicators of membrane potential

    Waggoner, A. S.

    Annual review of biophysics and bioengineering. 1979, 8(1), 47-68

  2. Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes

    Felix, J. P., Williams, B. S., Priest, B. T., Brochu, R. M., Dick, I. E., Warren, V. A., ... & Garcia, M. L.

    Assay and drug development technologies. 2004, 2(3), 260-268

  3. Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye

    Huber, C., Klimant, I., Krause, C., Werner, T., & Wolfbeis, O. S.

    Analytica chimica acta. 2001, 449(1-2), 81-93

  4. A Ca-dependent K channel in “luminal” membranes from the renal outer medulla

    Burnham, C., Braw, R., & Karlish, S. J. D.

    The Journal of membrane biology. 1986, 93(2), 177-186

  5. A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogenous populations of membrane vesicles

    Garty, H., Rudy, B., & Karlish, S. J.

    Journal of Biological Chemistry. 1983, 258(21), 13094-13099

  6. Amiloride blockable sodium fluxes in toad bladder membrane vesicles

    Garty, H.

    The Journal of membrane biology. 1984, 82(3), 269-279

  7. Identification and reconstitution of a Na+/K+/Cl− cotransporter and K+ channel from luminal membranes of renal red outer medulla

    Burnham, C., Karlish, S. J. D., & Jørgensen, P. L.

    Biochimica et Biophysica Acta (BBA)-Biomembranes. 1985, 821(3), 461-469

  8. The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes

    Neher, E., Sakmann, B., & Steinbach, J. H.

    Pflügers Archiv. 1978, 375(2), 219-228

  9. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J.

    Pflügers Archiv. 1981, 391(2), 85-100

  10. A patch‐clamp study of mammalian platelets and their voltage‐gated potassium current.

    Maruyama, Y.

    The Journal of physiology. 1987, ,

  11. Voltage‐gated potassium channels and the control of membrane potential in human platelets

    Mahaut‐Smith, M. P., Rink, T. J., Collins, S. C., & Sage, S. O.

    The Journal of physiology. 1990, 428(1), 723-735

  12. Calcium‐activated potassium channels in human platelets.

    Mahaut-Smith, M. P.

    The Journal of physiology. 1995, 484(1), 15-24

  13. Rapid ADP-evoked currents in human platelets recorded with the nystatin permeabilized patch technique

    Mahaut-Smith, M. P., Sage, S. O., & Rink, T. J.

    Journal of Biological Chemistry. 1992, 267(5), 3060-3065

  14. Receptor-activated single channels in intact human platelets

    Mahaut-Smith, M. P., Sage, S. O., & Rink, T. J.

    Journal of Biological Chemistry. 1990, 265(18), 10479-10483

  15. Three cation influx currents activated by purinergic receptor stimulation in rat megakaryocytes

    Somasundaram, B., & Mahaut-Smith, M. P.

    The Journal of physiology. 1994, 480(2), 225-231

  16. Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes

    Somasundaram, B., Norman, J. C., & Mahaut-Smith, M. P.

    Biochemical Journal. 1995, 309(3), 725-729

  17. Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes

    Tolhurst, G., Carter, R. N., Amisten, S., Holdich, J. P., Erlinge, D., & Mahaut-Smith, M. P.

    Platelets. 2008, 19(4), 308-313

  18. Probes of transmembrane potentials in platelets: changes in cyanine dye fluorescence in response to aggregation stimuli.

    Home, W. C., & Simons, E. R.

    Blood. 1978, 51(4), 741-749

  19. The interpretation of current-clamp recordings in the cell-attached patch-clamp configuration

    Mason, M. J., Simpson, A. K., Mahaut-Smith, M. P., & Robinson, H. P. C.

    Biophysical journal. 2005, 88(1), 739-750

  20. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes

    Mason, M. J., Hussain, J. F., & Mahaut-Smith, M. P.

    The Journal of Physiology. 2000, 524(Pt 2), 437

  21. The mode of agonist binding to a G protein–coupled receptor switches the effect that voltage changes have on signaling

    Rinne, A., Mobarec, J. C., Mahaut-Smith, M., Kolb, P., & Bünemann, M.

    Science Signaling. 2015, 8(401), ra110-ra110

  22. Direct voltage control of signaling via P2Y1 and other Gαq-coupled receptors

    Martinez-Pinna, J., Gurung, I. S., Vial, C., Leon, C., Gachet, C., Evans, R. J., & Mahaut-Smith, M. P.

    Journal of Biological Chemistry. 2005, 280(2), 1490-1498

  23. Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines.

    Wright, J. R., Amisten, S., Goodall, A. H., & Mahaut-Smith, M. P.

    Thrombosis and haemostasis. 2016, 116(2), 272

  24. Expression and functional characterization of the large-conductance calcium and voltage-activated potassium channel Kca 1.1 in megakaryocytes and platelets

    Balduini, A., Fava, C., Di Buduo, C. A., Abbonante, V., Meneguzzi, A., Soprano, P. M., ... & Minuz, P.

    J Thromb Haemost. 2021, ,

  25. Patch-clamp recordings of electrophysiological events in the platelet and megakaryocyte.

    Mahaut-Smith, M. P.

    In Platelets and Megakaryocytes . 2004, , 277-299

  26. Interplay between P2Y1, P2Y12, and P2X1 receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling

    Tolhurst, G., Vial, C., Léon, C., Gachet, C., Evans, R. J., & Mahaut-Smith, M. P.

    Blood. 2005, 106(5), 1644-1651

  27. Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte

    Carter, R. N., Tolhurst, G., Walmsley, G., Vizuete‐Forster, M., Miller, N., & Mahaut‐Smith, M. P.

    The Journal of physiology. 2006, 576(1), 151-162

  28. Patch clamp techniques for single channel and whole-cell recording

    Ogden, D., & Stanfield, P.

    In Microelectrode techniques: the Plymouth workshop handbook . 1994, , 53-78

  29. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording

    Priel, A., Gil, Z., Moy, V. T., Magleby, K. L., & Silberberg, S. D.

    Biophysical journal. 2007, 92(11), 3893-3900

  30. Anoctamin 6 is an essential component of the outwardly rectifying chloride channel.

    Martins, J. R., Faria, D., Kongsuphol, P., Reisch, B., Schreiber, R., & Kunzelmann, K.

    Proceedings of the National Academy of Sciences. 2011, 108(44), 18168-18172

  31. A major interspecies difference in the ionic selectivity of megakaryocyte Ca2+-activated channels sensitive to the TMEM16F inhibitor CaCCinh-A01

    Taylor, K. A., & Mahaut-Smith, M. P.

    Platelets. 2019, 30(8), 962-966

  32. Capacitative and non-capacitative signaling complexes in human platelets

    Berna-Erro, A., Galan, C., Dionisio, N., Gomez, L. J., Salido, G. M., & Rosado, J. A.

    Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2021, 1823(8), 1242-1251

  33. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity

    Harper, M. T., & Poole, A. W.

    Cell death & disease. 2013, 4(12), e969-e969

  34. Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets.

    Lang, F., Munzer, P., Gawaz, M., & Borst, O.

    Thromb Haemost. 2013, 110(5), 925-930

  35. Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure

    Harper, M. T., Londono, J. E. C., Quick, K., Londono, J. C., Flockerzi, V., Philipp, S. E., ... & Poole, A. W.

    Science Signaling. 2013, 6(281), ra50-ra50

  36. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel

    Wolfs, J. L., Wielders, S. J., Comfurius, P., Lindhout, T., Giddings, J. C., Zwaal, R. F., & Bevers, E. M.

    Blood. 2006, 108(7), 2223-2228

  37. Kv1. 3 is the exclusive voltage‐gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signalling and platelet count

    McCloskey, C., Jones, S., Amisten, S., Snowden, R. T., Kaczmarek, L. K., Erlinge, D., ... & Mahaut‐Smith, M. P.

    The Journal of physiology. 2010, 588(9), 1399-1406

  38. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function

    Schoenwaelder, S. M., Yuan, Y., Josefsson, E. C., White, M. J., Yao, Y., Mason, K. D., ... & Jackson, S. P.

    Blood, The Journal of the American Society of Hematology. 2009, 114(3), 663-666

  39. Procoagulant platelet balloons: evidence from cryopreparation and electron microscopy

    Hess, M. W., & Siljander, P.

    Histochemistry and cell biology. 2001, 115(5), 439-443

  40. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting

    Podoplelova, N. A., Sveshnikova, A. N., Kotova, Y. N., Eckly, A., Receveur, N., Nechipurenko, D. Y., ... & Panteleev, M. A.

    Blood, The Journal of the American Society of Hematology. 2016, 128(13), 1745-1755

  41. Procoagulant platelets form an α-granule protein-covered “cap” on their surface that promotes their attachment to aggregates

    Abaeva, A. A., Canault, M., Kotova, Y. N., Obydennyy, S. I., Yakimenko, A. O., Podoplelova, N. A., ... & Panteleev, M. A.

    Journal of Biological Chemistry. 2013, 288(41), 29621-29632

  42. Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets

    MacKenzie, A. B., Mahaut-Smith, M. P., & Sage, S. O.

    Journal of Biological Chemistry. 1996, 271(6), 2879-2881

  43. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets

    Fujii, T., Sakata, A., Nishimura, S., Eto, K., & Nagata, S.

    Proceedings of the National Academy of Sciences. 2015, 112(41), 12800-12805

  44. Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry

    Gorudko, I. V., Sokolov, A. V., Shamova, E. V., Grudinina, N. A., Drozd, E. S., Shishlo, L. M., ... & Panasenko, O. M.

    Biology open. 2013, 2(9), 916-923

  45. Neutrophil activation in response to monomeric myeloperoxidase

    Gorudko, I. V., Grigorieva, D. V., Sokolov, A. V., Shamova, E. V., Kostevich, V. A., Kudryavtsev, I. V., ... & Panasenko, O. M.

    Biochemistry and Cell Biology. 2018, 96(5), 592-601

  46. The effect of myeloperoxidase isoforms on biophysical properties of red blood cells

    Shamova, E. V., Gorudko, I. V., Grigorieva, D. V., Sokolov, A. V., Kokhan, A. U., Melnikova, G. B., ... & Panasenko, O. M.

    Molecular and cellular biochemistry. 2020, 464(1), 119-130

  47. Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level

    Gorudko, I. V., Sokolov, A. V., Shamova, E. V., Grigorieva, D. V., Mironova, E. V., Kudryavtsev, I. V., ... & Timoshenko, A. V.

    Archives of biochemistry and biophysics. 2016, 591, 87-97

  48. Chloride channels in excised membrane patches from human platelets: effect of intracellular calcium

    MacKenzie, A. B., & Mahaut-Smith, M. P.

    Biochimica et Biophysica Acta (BBA)-Biomembranes. 1996, 1278(1), 131-136