Dye indicators of membrane potential
Waggoner, A. S.
Annual review of biophysics and bioengineering. 1979, 8(1), 47-68
Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes
Felix, J. P., Williams, B. S., Priest, B. T., Brochu, R. M., Dick, I. E., Warren, V. A., ... & Garcia, M. L.
Assay and drug development technologies. 2004, 2(3), 260-268
Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye
Huber, C., Klimant, I., Krause, C., Werner, T., & Wolfbeis, O. S.
Analytica chimica acta. 2001, 449(1-2), 81-93
A Ca-dependent K channel in “luminal” membranes from the renal outer medulla
Burnham, C., Braw, R., & Karlish, S. J. D.
The Journal of membrane biology. 1986, 93(2), 177-186
A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogenous populations of membrane vesicles
Garty, H., Rudy, B., & Karlish, S. J.
Journal of Biological Chemistry. 1983, 258(21), 13094-13099
Amiloride blockable sodium fluxes in toad bladder membrane vesicles
Garty, H.
The Journal of membrane biology. 1984, 82(3), 269-279
Identification and reconstitution of a Na+/K+/Cl− cotransporter and K+ channel from luminal membranes of renal red outer medulla
Burnham, C., Karlish, S. J. D., & Jørgensen, P. L.
Biochimica et Biophysica Acta (BBA)-Biomembranes. 1985, 821(3), 461-469
The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes
Neher, E., Sakmann, B., & Steinbach, J. H.
Pflügers Archiv. 1978, 375(2), 219-228
Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches
Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J.
Pflügers Archiv. 1981, 391(2), 85-100
A patch‐clamp study of mammalian platelets and their voltage‐gated potassium current.
Maruyama, Y.
The Journal of physiology. 1987, ,
Voltage‐gated potassium channels and the control of membrane potential in human platelets
Mahaut‐Smith, M. P., Rink, T. J., Collins, S. C., & Sage, S. O.
The Journal of physiology. 1990, 428(1), 723-735
Calcium‐activated potassium channels in human platelets.
Mahaut-Smith, M. P.
The Journal of physiology. 1995, 484(1), 15-24
Rapid ADP-evoked currents in human platelets recorded with the nystatin permeabilized patch technique
Mahaut-Smith, M. P., Sage, S. O., & Rink, T. J.
Journal of Biological Chemistry. 1992, 267(5), 3060-3065
Receptor-activated single channels in intact human platelets
Mahaut-Smith, M. P., Sage, S. O., & Rink, T. J.
Journal of Biological Chemistry. 1990, 265(18), 10479-10483
Three cation influx currents activated by purinergic receptor stimulation in rat megakaryocytes
Somasundaram, B., & Mahaut-Smith, M. P.
The Journal of physiology. 1994, 480(2), 225-231
Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes
Somasundaram, B., Norman, J. C., & Mahaut-Smith, M. P.
Biochemical Journal. 1995, 309(3), 725-729
Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes
Tolhurst, G., Carter, R. N., Amisten, S., Holdich, J. P., Erlinge, D., & Mahaut-Smith, M. P.
Platelets. 2008, 19(4), 308-313
Probes of transmembrane potentials in platelets: changes in cyanine dye fluorescence in response to aggregation stimuli.
Home, W. C., & Simons, E. R.
Blood. 1978, 51(4), 741-749
The interpretation of current-clamp recordings in the cell-attached patch-clamp configuration
Mason, M. J., Simpson, A. K., Mahaut-Smith, M. P., & Robinson, H. P. C.
Biophysical journal. 2005, 88(1), 739-750
A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes
Mason, M. J., Hussain, J. F., & Mahaut-Smith, M. P.
The Journal of Physiology. 2000, 524(Pt 2), 437
The mode of agonist binding to a G protein–coupled receptor switches the effect that voltage changes have on signaling
Rinne, A., Mobarec, J. C., Mahaut-Smith, M., Kolb, P., & Bünemann, M.
Science Signaling. 2015, 8(401), ra110-ra110
Direct voltage control of signaling via P2Y1 and other Gαq-coupled receptors
Martinez-Pinna, J., Gurung, I. S., Vial, C., Leon, C., Gachet, C., Evans, R. J., & Mahaut-Smith, M. P.
Journal of Biological Chemistry. 2005, 280(2), 1490-1498
Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines.
Wright, J. R., Amisten, S., Goodall, A. H., & Mahaut-Smith, M. P.
Thrombosis and haemostasis. 2016, 116(2), 272
Expression and functional characterization of the large-conductance calcium and voltage-activated potassium channel Kca 1.1 in megakaryocytes and platelets
Balduini, A., Fava, C., Di Buduo, C. A., Abbonante, V., Meneguzzi, A., Soprano, P. M., ... & Minuz, P.
J Thromb Haemost. 2021, ,
Patch-clamp recordings of electrophysiological events in the platelet and megakaryocyte.
Mahaut-Smith, M. P.
In Platelets and Megakaryocytes . 2004, , 277-299
Interplay between P2Y1, P2Y12, and P2X1 receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling
Tolhurst, G., Vial, C., Léon, C., Gachet, C., Evans, R. J., & Mahaut-Smith, M. P.
Blood. 2005, 106(5), 1644-1651
Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte
Carter, R. N., Tolhurst, G., Walmsley, G., Vizuete‐Forster, M., Miller, N., & Mahaut‐Smith, M. P.
The Journal of physiology. 2006, 576(1), 151-162
Patch clamp techniques for single channel and whole-cell recording
Ogden, D., & Stanfield, P.
In Microelectrode techniques: the Plymouth workshop handbook . 1994, , 53-78
Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording
Priel, A., Gil, Z., Moy, V. T., Magleby, K. L., & Silberberg, S. D.
Biophysical journal. 2007, 92(11), 3893-3900
Anoctamin 6 is an essential component of the outwardly rectifying chloride channel.
Martins, J. R., Faria, D., Kongsuphol, P., Reisch, B., Schreiber, R., & Kunzelmann, K.
Proceedings of the National Academy of Sciences. 2011, 108(44), 18168-18172
A major interspecies difference in the ionic selectivity of megakaryocyte Ca2+-activated channels sensitive to the TMEM16F inhibitor CaCCinh-A01
Taylor, K. A., & Mahaut-Smith, M. P.
Platelets. 2019, 30(8), 962-966
Capacitative and non-capacitative signaling complexes in human platelets
Berna-Erro, A., Galan, C., Dionisio, N., Gomez, L. J., Salido, G. M., & Rosado, J. A.
Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2021, 1823(8), 1242-1251
Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity
Harper, M. T., & Poole, A. W.
Cell death & disease. 2013, 4(12), e969-e969
Regulation of STIM1/Orai1-dependent Ca2+ signalling in platelets.
Lang, F., Munzer, P., Gawaz, M., & Borst, O.
Thromb Haemost. 2013, 110(5), 925-930
Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure
Harper, M. T., Londono, J. E. C., Quick, K., Londono, J. C., Flockerzi, V., Philipp, S. E., ... & Poole, A. W.
Science Signaling. 2013, 6(281), ra50-ra50
Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel
Wolfs, J. L., Wielders, S. J., Comfurius, P., Lindhout, T., Giddings, J. C., Zwaal, R. F., & Bevers, E. M.
Blood. 2006, 108(7), 2223-2228
Kv1. 3 is the exclusive voltage‐gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signalling and platelet count
McCloskey, C., Jones, S., Amisten, S., Snowden, R. T., Kaczmarek, L. K., Erlinge, D., ... & Mahaut‐Smith, M. P.
The Journal of physiology. 2010, 588(9), 1399-1406
Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function
Schoenwaelder, S. M., Yuan, Y., Josefsson, E. C., White, M. J., Yao, Y., Mason, K. D., ... & Jackson, S. P.
Blood, The Journal of the American Society of Hematology. 2009, 114(3), 663-666
Procoagulant platelet balloons: evidence from cryopreparation and electron microscopy
Hess, M. W., & Siljander, P.
Histochemistry and cell biology. 2001, 115(5), 439-443
Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting
Podoplelova, N. A., Sveshnikova, A. N., Kotova, Y. N., Eckly, A., Receveur, N., Nechipurenko, D. Y., ... & Panteleev, M. A.
Blood, The Journal of the American Society of Hematology. 2016, 128(13), 1745-1755
Procoagulant platelets form an α-granule protein-covered “cap” on their surface that promotes their attachment to aggregates
Abaeva, A. A., Canault, M., Kotova, Y. N., Obydennyy, S. I., Yakimenko, A. O., Podoplelova, N. A., ... & Panteleev, M. A.
Journal of Biological Chemistry. 2013, 288(41), 29621-29632
Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets
MacKenzie, A. B., Mahaut-Smith, M. P., & Sage, S. O.
Journal of Biological Chemistry. 1996, 271(6), 2879-2881
TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets
Fujii, T., Sakata, A., Nishimura, S., Eto, K., & Nagata, S.
Proceedings of the National Academy of Sciences. 2015, 112(41), 12800-12805
Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry
Gorudko, I. V., Sokolov, A. V., Shamova, E. V., Grudinina, N. A., Drozd, E. S., Shishlo, L. M., ... & Panasenko, O. M.
Biology open. 2013, 2(9), 916-923
Neutrophil activation in response to monomeric myeloperoxidase
Gorudko, I. V., Grigorieva, D. V., Sokolov, A. V., Shamova, E. V., Kostevich, V. A., Kudryavtsev, I. V., ... & Panasenko, O. M.
Biochemistry and Cell Biology. 2018, 96(5), 592-601
The effect of myeloperoxidase isoforms on biophysical properties of red blood cells
Shamova, E. V., Gorudko, I. V., Grigorieva, D. V., Sokolov, A. V., Kokhan, A. U., Melnikova, G. B., ... & Panasenko, O. M.
Molecular and cellular biochemistry. 2020, 464(1), 119-130
Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level
Gorudko, I. V., Sokolov, A. V., Shamova, E. V., Grigorieva, D. V., Mironova, E. V., Kudryavtsev, I. V., ... & Timoshenko, A. V.
Archives of biochemistry and biophysics. 2016, 591, 87-97
Chloride channels in excised membrane patches from human platelets: effect of intracellular calcium
MacKenzie, A. B., & Mahaut-Smith, M. P.
Biochimica et Biophysica Acta (BBA)-Biomembranes. 1996, 1278(1), 131-136