English

«Systems Biology and Physiology Reports:Issue #2»

Published on June 30, 2021
pdf

In vitro models of thrombosis and hemostasis

Abnormalities in hemostatic response are responsible for a large number of life-threatening conditions, however, despite many decades of research, today there are no reliable ways to correct hemostasis without significant risks of thrombosis or bleeding. This situation reflects a poor understanding of the key mechanisms that regulate the hemostatic response. To uncover the principles underlying the regulation of hemostasis, both experimental models and theoretical approaches are actively used. This review focuses on current in vitro models of thrombosis and hemostasis and describes key approaches and tools for studying blood coagulation outside the human/animal body. To reconstruct this process, both microfluidic technologies and approaches based on manufacturing artificial vessels using a variety of hydrogels are actively used. In vitro models of thrombosis traditionally mimic non-penetrating damage to the vessel wall and have been used for more than 30 years to uncover the key processes responsible for the formation of arterial thrombi. Models of in vitro hemostasis have been actively developed only in recent years and are focused ono crucial mechanisms governing the formation of hemostatic plugs - clots that stop bleeding upon a penetrating vascular injury. Modern in vitro models of thrombosis and hemostasis are used not only as tools for fundamental research but are also introduced into clinical practice.

Fabrication of PDMS-based flow chamber: a) A master mold is prepared using photolithography. The relief (typically made of photoresist on a silicon wafer, shown in orange) usually contains several patterns to be imprinted on PDMS; b) The relief form (master mold) is poured with the liquid mixture of PDMS base with curing agent; с-d) A part of polymerized PDMS is then сut and extracted from the mold e) inlet and outlet holes are made and the required tubings are connected. The chamber is attached onto the glass or plastic coverslip (gray) using plasma bonding or vacuum-sealing.
1 755
0
#hemostasis#platelets#microfluidics#hydrogel#whole blood#in vitro models#thrombosis

Presence of PI-rich vesicles is required for the PLC ζ activation according to mathematical modeling

Phospholipase C ζ (PLCζ) is an enzyme found in the cytoplasm and acrosome of mammalian spermatozoa. It catalyzes the reaction of phosphatidylinositol-4,5-phosphate hydrolysis into inositol-3-phosphate and diacylglycerol. PLCζ is present in the sperm cell acrosome and cytosol but doesn’t significantly affect its metabolism. However, after the fusion of sperm and egg membranes, its activity increases as it begins to bind membranes of the egg. It is unknown why PLCζ is inactive in spermatozoa or any type of somatic cell.

In this work, the modeling approach explains the reasons for the absence of PLCζ activity in any type of mammalian cells but eggs. A model describing the activity of PLCζ in physiological calcium concentrations was developed. It was shown that the presence of phosphoinositide-rich vesicles is required for the PLC ζ activity in mature mammalian eggs.

Scheme of the full model. (A) Reactions in the oocyte, PLCζ – calcium-free PLCζ , PLCζ_Ca – PLCζ, bound with one calcium ion, PLCζ_2Ca – PLCζ, bound with two calcium ions, PLCζ_3Ca  – with three, PLCζ_4Ca  – with four. PLCζ_m  – PLCζ, bound with cell membrane, PLCζ_(Ca m ) – PLCζ, bound with the cell membrane and one calcium ion, PLCζ_(2Ca m )– PLCζ, bound with the cell membrane and two calcium ions, PLCζ_(3Ca m ) – with the cell membrane and three calcium ions, PLCζ_(4Ca m ) – with the cell membrane and four calcium ions. PIP2 and PIP2_v  – are phosphatidylinositol-4,5 – bis-phosphates on cell and vesicle membrane accordingly. DAG and DAG_v  – diacylglycerol on cell membrane and vesicles accordingly. IP3 – inositol-3-phosphate. PLCζ_v – PLCζ, bound with vesicles, PLCζ_(Ca v ) – PLCζ, bound with vesicles and one calcium ion, PLCζ_(2Ca v ) – PLCζ, bound with vesicles and two calcium ions, PLCζ_(3Ca v ) – with vesicles and three calcium ions, PLCζ_(4Ca v ) – with vesicles and four calcium ions. (B) The sperm cell model is identical to the oocyte model except for the absence of the vesicles.
1 091
0
#phospholipase Cz#calcium signaling#spermatozoa#oocyte

STIM1-ORAI1 direct interaction cannot govern store-operated calcium entry (SOCE) in platelets

Store-operated calcium entry (SOCE) plays an important role in platelet function. It is generally assumed that the mechanism of SOCE relies on the direct interaction of STIM1 and ORAI1 proteins with specific STIM1:ORAI1 stoichiometry. However, in platelets, other pathways may take place. Here we aim to investigate the mechanisms of SOCE in platelets. We developed a lattice-based mathematical model that represented STIM1-ORAI1 interactions and applied it to both HEK cells, where SOCE mechanism is well established, and platelets. The model was able to describe STIM1-ORAI1 behavior in HEK cells successfully. We used the same parameters for protein interaction and applied them to platelets. As a result, we demonstrated that the number of STIM1 proteins on ER membrane could not assure the needed stoichiometry to proper SOCE in platelets.

(A) STIM1-ORAI1 interaction for HEK cells. Bound proteins are presented by brown, STIM1 in cluster – green, free proteins - red. (B) STIM1-ORAI1 puncta formation dependance on clustering probability. Dashed lines represent same process for D=0.01 〖μm〗^2/s (C) Typical system state at t=100ms for different clustering probabilities
1 655
0
#platelets#mathematical modeling#store-operated calcium entry#platelet intracellular signaling

A strong correlation exists between platelet consumption and platelet hyperactivation in COVID-19 patients. Pilot study of the patient cohort from CCH RAS Hospital (Troitsk).

, , , , , , , ,

It is known that in COVID-19, hypercoagulation and sometimes thrombocytopenia are related to disease severity. There is also controversial data on platelet participation in COVID-19 pathology. We aimed to determine the degree of platelet hyperactivation in COVID-19 patients. Whole blood flow cytometry with Annexin-V and lactadherin staining ("PS+ platelets") was utilized. Additionally, a stochastic mathematical model of platelet production and consumption was developed. Here we demonstrated that the percentage of PS+ platelets in COVID-19 patients was twofold that of healthy donors. There was a significant correlation between the amount of PS+ platelets and the percentage of lung damage in patients. No connection was found between platelet senescence and hospital therapy or patients' chronic diseases, except for chronic lung disease. Although no thrombocytopenia was observed in patients, the observed increase in platelet size (FSC-A parameter in flow cytometry) could indicate that platelet age is decreased in patients. The developed computational model of platelet turnover confirms the possibility of intense platelet consumption without noticeable changes in platelet count. We conclude that the observed platelet hyperactivation in COVID-19 could be caused by platelet activation in circulation, leading to platelet consumption without significant thrombocytopenia.

Computational model of platelet production in the presence of COVID-19 induced thrombosis. A – Detailed scheme of the model (most sensitive reactions are highlighted in red). B – Dependence of the average platelet count (green curve and dots) and platelet size (red curve and dots) from the platelet consumption index in the model. Platelet number and size in the absence of consumption lie in the areas, highlighted by green and red rectangles correspondingly. C – Platelet size distribution in the absence (green bars) and the presence (red bars) of consumption (with consumption index set to 2). Whiskers on all plots represent SD.
2 892
0
#COVID-19#platelets#coagulation#inflammation#hyperactivation