A minimal mathematical model of neutrophil pseudopodium formation during chemotaxis
Introduction
Neutrophils promote venular thrombosis by shaping the rheological environment for platelet aggregation
D. Puhr-Westerheide, S. Schink, M. Fabritius, L. Mittmann, M. Hessenauer, J. Pircher, G. Zuchtriegel, B. Uhl, M. Holzer, S. Massberg, F. Krombach, C. Reichel
Scientific Reports. 2019, 9, None
Modeling neutrophil migration in dynamic chemoattractant gradients: assessing the role of exosomes during signal relay
A. Szatmary, R. Nossal, C. Parent, R. Majumdar
Molecular Biology of the Cell. 2017, 28, 3457-3470
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, None, None
Cellular Motility Driven by Assembly and Disassembly of Actin Filaments
T. Pollard, G. Borisy
Cell. 2003, 112, 453-465
Life at the Leading Edge
A. Ridley
Cell. 2011, 145, 1012-1022
Life at the Leading Edge
A. Ridley
Cell. 2011, 145, 1012-1022
Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks
R. Insall, L. Machesky
Developmental Cell. 2009, 17, 310-322
Review of the mechanism of processive actin filament elongation by formins
A. Paul, T. Pollard
Cell Motility and the Cytoskeleton. 2009, 66, 606-617
Mechanism and Function of Formins in the Control of Actin Assembly
B. Goode, M. Eck
Annual Review of Biochemistry. 2007, 76, 593-627
Modeling neutrophil migration in dynamic chemoattractant gradients: assessing the role of exosomes during signal relay
A. Szatmary, R. Nossal, C. Parent, R. Majumdar
Molecular Biology of the Cell. 2017, 28, 3457-3470
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, None, None
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, None, None
Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome
D Zicha, W E Allen, P M Brickell, C Kinnon, G A Dunn, G E Jones, A J Thrasher
British Journal of Haematology. 1998, 101(4), 659–665
Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex
M. Rodnick-Smith, Q. Luan, S. Liu, B. Nolen
Proceedings of the National Academy of Sciences. 2016, 113, E3834-E3843
Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration
X. Chen, H. Zhu, X. Feng, X. Li, Y. Lu, Z. Wang, Y. Rezgui
Communications Biology. 2020, 3, None
Multiscale Stochastic Reaction–Diffusion Modeling: Application to Actin Dynamics in Filopodia
R. Erban, M. Flegg, G. Papoian
Bulletin of Mathematical Biology. 2014, 76, 799-818
Modeling the Shape of Synaptic Spines by Their Actin Dynamics
M. Bonilla-Quintana, F. Wörgötter, C. Tetzlaff, M. Fauth
Frontiers in Synaptic Neuroscience. 2020, 12, None
Polarization and Movement of Keratocytes: A Multiscale Modelling Approach
A. Marée, A. Jilkine, A. Dawes, V. Grieneisen, L. Edelstein-Keshet
Bulletin of Mathematical Biology. 2006, 68, 1169-1211
Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes
L. Fritz-Laylin, M. Riel-Mehan, B. Chen, S. Lord, T. Goddard, T. Ferrin, S. Nicholson-Dykstra, H. Higgs, G. Johnson, E. Betzig, R. Mullins
eLife. 2017, 6, None
Materials and Methods
Materials
The sources of the materials were as follows: DiOC-6, bovine serum albumin (BSA), human fibrinogen (Sigma-Aldrich, St Louis, MO); fibrillar collagen type I (Chrono-Log Corporation; Havertown; USA).
Fluorescent microscopy
Parallel-plate flow chambers were mounted as described previously
Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface
D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev
Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47
Blood was collected from healthy adult volunteers (n=5, men and women 18-35 years old) or from patients with Wiskott-Aldrich syndrome (n = 3) into Sarstedt-Monovette© hirudin (525 ATU/ml blood) vacuum tubes.
Whole blood was pre-loaded with DiOC6 (1 µM). Blood was perfused through the parallel-plate chambers over collagen-coated (0.2 mg/ml) surface with wall shear rates of 100 s-1 as described in
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, None, None
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, None, None
Data analysis
Nikon NIS-Elements software was used for microscope image acquisition; ImageJ
Fiji: an open-source platform for biological-image analysis
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona
Nature Methods. 2012, 9, 676-682
Statistics
Results
Experimental measurement of the linear velocities of pseudopodium formation.
Construction of the computational model of actin polymerization
Spatial control of actin polymerization during neutrophil chemotaxis
O. Weiner, G. Servant, M. Welch, T. Mitchison, J. Sedat, H. Bourne
Nature Cell Biology. 1999, 1, 75-81
ATP and ADP actin states
D. Kudryashov, E. Reisler
Biopolymers. 2013, 99, 245-256
ATP and ADP actin states
D. Kudryashov, E. Reisler
Biopolymers. 2013, 99, 245-256
Actin Filament Length Tunes Elasticity of Flexibly Cross-Linked Actin Networks
K. Kasza, C. Broedersz, G. Koenderink, Y. Lin, W. Messner, E. Millman, F. Nakamura, T. Stossel, F. MacKintosh, D. Weitz
Biophysical Journal. 2010, 99, 1091-1100
- The following equations describe the actin polymerization:
- For the branching reaction, we use a simple approximation to get the expression for the branching possibility:
F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling
H. Johnson, S. King, S. Asokan, J. Rotty, J. Bear, J. Haugh
Journal of Cell Biology. 2015, 208, 443-455
Filopodia: molecular architecture and cellular functions
P. Mattila, P. Lappalainen
Nature Reviews Molecular Cell Biology. 2008, 9, 446-454
Actin Turnover in Lamellipodial Fragments
D. Raz-Ben Aroush, N. Ofer, E. Abu-Shah, J. Allard, O. Krichevsky, A. Mogilner, K. Keren
Current Biology. 2017, 27, 2963-2973.e14
The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration
C. Wu, M. Lin, D. Wu, Y. Huang, H. Huang, C. Chen
British Journal of Pharmacology. 2014, 171, 5541-5554
Activation of nucleation promoting factors for directional actin filament elongation: Allosteric regulation and multimerization on the membrane
S. Suetsugu
Seminars in Cell & Developmental Biology. 2013, 24, 267-271
The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation
C. Schmeiser, C. Winkler
Journal of Theoretical Biology. 2015, 380, 144-155
The computational model parameter estimation and validation
Electrostatics Control Actin Filament Nucleation and Elongation Kinetics
A. Crevenna, N. Naredi-Rainer, A. Schönichen, J. Dzubiella, D. Barber, D. Lamb, R. Wedlich-Söldner
Journal of Biological Chemistry. 2013, 288, 12102-12113
Actin disassembly clock determines shape and speed of lamellipodial fragments
N. Ofer, A. Mogilner, K. Keren
Proceedings of the National Academy of Sciences. 2011, 108, 20394-20399
The Actin-Based Nanomachine at the Leading Edge of Migrating Cells
V. Abraham, V. Krishnamurthi, D. Taylor, F. Lanni
Biophysical Journal. 1999, 77, 1721-1732
The adjustment of the computational model to the data on Wiskott-Aldrich syndrome patients
Discussion
A novel real time imaging platform to quantify macrophage phagocytosis
T. Kapellos, L. Taylor, H. Lee, S. Cowley, W. James, A. Iqbal, D. Greaves
Biochemical Pharmacology. 2016, 116, 107-119
Super-Resolution Correlative Light and Electron Microscopy (SR-CLEM) Reveals Novel Ultrastructural Insights Into Dendritic Cell Podosomes
B. Joosten, M. Willemse, J. Fransen, A. Cambi, K. van den Dries
Frontiers in Immunology. 2018, 9, None
Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration
X. Chen, H. Zhu, X. Feng, X. Li, Y. Lu, Z. Wang, Y. Rezgui
Communications Biology. 2020, 3, None
The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation
C. Schmeiser, C. Winkler
Journal of Theoretical Biology. 2015, 380, 144-155
Intracellular signalling during neutrophil recruitment
A. Mócsai, B. Walzog, C. Lowell
Cardiovascular Research. 2015, 107, 373-385
Neutrophil polarization: Spatiotemporal dynamics of RhoA activity support a self-organizing mechanism
K. Wong, O. Pertz, K. Hahn, H. Bourne
Proceedings of the National Academy of Sciences. 2006, 103, 3639-3644
Network Crosstalk Dynamically Changes during Neutrophil Polarization
C. Ku, Y. Wang, O. Weiner, S. Altschuler, L. Wu
Cell. 2012, 149, 1073-1083
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, None, None
The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets
H. Ochs, S. Slichter, L. Harker, W. Von Behrens, R. Clark, R. Wedgwood
Blood. 1980, 55, 243-252
The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function
Blundell, M. P., Worth, A., Bouma, G. & Thrasher, A. J.
Disease Markers. 2010, 29, 157-75
A Fundamental Role of Myh9 for Neutrophil Migration in Innate Immunity
A. Zehrer, R. Pick, M. Salvermoser, A. Boda, M. Miller, K. Stark, L. Weckbach, B. Walzog, D. Begandt
The Journal of Immunology. 2018, 201, 1748-1764
Acknowledgments
Funding
References of this article:
Neutrophils promote venular thrombosis by shaping the rheological environment for platelet aggregation
D. Puhr-Westerheide, S. Schink, M. Fabritius, L. Mittmann, M. Hessenauer, J. Pircher, G. Zuchtriegel, B. Uhl, M. Holzer, S. Massberg, F. Krombach, C. Reichel
Scientific Reports. 2019, 9,
Modeling neutrophil migration in dynamic chemoattractant gradients: assessing the role of exosomes during signal relay
A. Szatmary, R. Nossal, C. Parent, R. Majumdar
Molecular Biology of the Cell. 2017, 28, 3457-3470
Ex vivo observation of granulocyte activity during thrombus formation
Daria S. Morozova, Alexey A. Martyanov, Sergei I. Obydennyi, Julia-Jessica D. Korobkin, Alexey V. Sokolov, Ekaterina V. Shamova, Irina V. Gorudko, Anna Shcherbina, Mikhail A. Panteleev, A. N. Sveshnikova
bioRxiv. 2020, ,
Cellular Motility Driven by Assembly and Disassembly of Actin Filaments
T. Pollard, G. Borisy
Cell. 2003, 112, 453-465
Life at the Leading Edge
A. Ridley
Cell. 2011, 145, 1012-1022
Actin Dynamics at the Leading Edge: From Simple Machinery to Complex Networks
R. Insall, L. Machesky
Developmental Cell. 2009, 17, 310-322
Review of the mechanism of processive actin filament elongation by formins
A. Paul, T. Pollard
Cell Motility and the Cytoskeleton. 2009, 66, 606-617
Mechanism and Function of Formins in the Control of Actin Assembly
B. Goode, M. Eck
Annual Review of Biochemistry. 2007, 76, 593-627
Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome
D Zicha, W E Allen, P M Brickell, C Kinnon, G A Dunn, G E Jones, A J Thrasher
British Journal of Haematology. 1998, 101(4), 659–665
Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex
M. Rodnick-Smith, Q. Luan, S. Liu, B. Nolen
Proceedings of the National Academy of Sciences. 2016, 113, E3834-E3843
Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration
X. Chen, H. Zhu, X. Feng, X. Li, Y. Lu, Z. Wang, Y. Rezgui
Communications Biology. 2020, 3,
Multiscale Stochastic Reaction–Diffusion Modeling: Application to Actin Dynamics in Filopodia
R. Erban, M. Flegg, G. Papoian
Bulletin of Mathematical Biology. 2014, 76, 799-818
Modeling the Shape of Synaptic Spines by Their Actin Dynamics
M. Bonilla-Quintana, F. Wörgötter, C. Tetzlaff, M. Fauth
Frontiers in Synaptic Neuroscience. 2020, 12,
Polarization and Movement of Keratocytes: A Multiscale Modelling Approach
A. Marée, A. Jilkine, A. Dawes, V. Grieneisen, L. Edelstein-Keshet
Bulletin of Mathematical Biology. 2006, 68, 1169-1211
Actin-based protrusions of migrating neutrophils are intrinsically lamellar and facilitate direction changes
L. Fritz-Laylin, M. Riel-Mehan, B. Chen, S. Lord, T. Goddard, T. Ferrin, S. Nicholson-Dykstra, H. Higgs, G. Johnson, E. Betzig, R. Mullins
eLife. 2017, 6,
Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface
D. Nechipurenko, N. Receveur, A. Yakimenko, T. Shepelyuk, A. Yakusheva, R. Kerimov, S. Obydennyy, A. Eckly, C. Léon, C. Gachet, E. Grishchuk, F. Ataullakhanov, P. Mangin, M. Panteleev
Arteriosclerosis, Thrombosis, and Vascular Biology. 2019, 39, 37-47
Fiji: an open-source platform for biological-image analysis
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona
Nature Methods. 2012, 9, 676-682
Spatial control of actin polymerization during neutrophil chemotaxis
O. Weiner, G. Servant, M. Welch, T. Mitchison, J. Sedat, H. Bourne
Nature Cell Biology. 1999, 1, 75-81
ATP and ADP actin states
D. Kudryashov, E. Reisler
Biopolymers. 2013, 99, 245-256
Actin Filament Length Tunes Elasticity of Flexibly Cross-Linked Actin Networks
K. Kasza, C. Broedersz, G. Koenderink, Y. Lin, W. Messner, E. Millman, F. Nakamura, T. Stossel, F. MacKintosh, D. Weitz
Biophysical Journal. 2010, 99, 1091-1100
F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling
H. Johnson, S. King, S. Asokan, J. Rotty, J. Bear, J. Haugh
Journal of Cell Biology. 2015, 208, 443-455
Filopodia: molecular architecture and cellular functions
P. Mattila, P. Lappalainen
Nature Reviews Molecular Cell Biology. 2008, 9, 446-454
Actin Turnover in Lamellipodial Fragments
D. Raz-Ben Aroush, N. Ofer, E. Abu-Shah, J. Allard, O. Krichevsky, A. Mogilner, K. Keren
Current Biology. 2017, 27, 2963-2973.e14
The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration
C. Wu, M. Lin, D. Wu, Y. Huang, H. Huang, C. Chen
British Journal of Pharmacology. 2014, 171, 5541-5554
Activation of nucleation promoting factors for directional actin filament elongation: Allosteric regulation and multimerization on the membrane
S. Suetsugu
Seminars in Cell & Developmental Biology. 2013, 24, 267-271
The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation
C. Schmeiser, C. Winkler
Journal of Theoretical Biology. 2015, 380, 144-155
Real-Time Measurements of Actin Filament Polymerization by Total Internal Reflection Fluorescence Microscopy
J. Kuhn, T. Pollard
Biophysical Journal. 2005, 88, 1387-1402
The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments
R. Mullins, J. Heuser, T. Pollard
Proceedings of the National Academy of Sciences. 1998, 95, 6181-6186
Super-Resolution Correlative Light and Electron Microscopy (SR-CLEM) Reveals Novel Ultrastructural Insights Into Dendritic Cell Podosomes
B. Joosten, M. Willemse, J. Fransen, A. Cambi, K. van den Dries
Frontiers in Immunology. 2018, 9,
The Actin-Based Nanomachine at the Leading Edge of Migrating Cells
V. Abraham, V. Krishnamurthi, D. Taylor, F. Lanni
Biophysical Journal. 1999, 77, 1721-1732
Electrostatics Control Actin Filament Nucleation and Elongation Kinetics
A. Crevenna, N. Naredi-Rainer, A. Schönichen, J. Dzubiella, D. Barber, D. Lamb, R. Wedlich-Söldner
Journal of Biological Chemistry. 2013, 288, 12102-12113
Actin disassembly clock determines shape and speed of lamellipodial fragments
N. Ofer, A. Mogilner, K. Keren
Proceedings of the National Academy of Sciences. 2011, 108, 20394-20399
A novel real time imaging platform to quantify macrophage phagocytosis
T. Kapellos, L. Taylor, H. Lee, S. Cowley, W. James, A. Iqbal, D. Greaves
Biochemical Pharmacology. 2016, 116, 107-119
Intracellular signalling during neutrophil recruitment
A. Mócsai, B. Walzog, C. Lowell
Cardiovascular Research. 2015, 107, 373-385
Neutrophil polarization: Spatiotemporal dynamics of RhoA activity support a self-organizing mechanism
K. Wong, O. Pertz, K. Hahn, H. Bourne
Proceedings of the National Academy of Sciences. 2006, 103, 3639-3644
Network Crosstalk Dynamically Changes during Neutrophil Polarization
C. Ku, Y. Wang, O. Weiner, S. Altschuler, L. Wu
Cell. 2012, 149, 1073-1083
The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets
H. Ochs, S. Slichter, L. Harker, W. Von Behrens, R. Clark, R. Wedgwood
Blood. 1980, 55, 243-252
The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function
Blundell, M. P., Worth, A., Bouma, G. & Thrasher, A. J.
Disease Markers. 2010, 29, 157-75
A Fundamental Role of Myh9 for Neutrophil Migration in Innate Immunity
A. Zehrer, R. Pick, M. Salvermoser, A. Boda, M. Miller, K. Stark, L. Weckbach, B. Walzog, D. Begandt
The Journal of Immunology. 2018, 201, 1748-1764