English

Platelet functional responses and signalling: the molecular relationship. Part 2: receptors.

Small, non-nuclear cells, platelets, are primarily designed to form aggregates when blood vessels are damaged, stopping bleeding. To perform this function, platelets can implement several functional responses induced by various agonists and coordinated by a complex network of intracellular signaling triggered by a dozen of different receptors. This review, the second in a series, describes the known intracellular signaling pathways induced by platelet receptors in response to canonical and rare agonists. Particular focus will be on interaction points and “synergy” of platelet activation pathways and intermediate or “secondary” activation mediators that transmit a signal to functional manifestations.


Different degrees of the platelet activation in hemostasis. Upon weak stimulation, platelets pass into a weakly activated state, in which there is no clustering of platelet integrins and no significant change in the shape of platelets. This weak activation is reversible, and it corresponds to the state of platelets in the outer layers ("coat") of the thrombus. Upon stronger activation, platelet shape significantly changes. Platelets become irreversibly activated and aggregate. The secretion of platelet granules also occurs. At the maximum degree of activation, platelet mitochondria collapse, and platelets pass into a procoagulant state, exposing phosphatidylserine, which significantly accelerates blood plasma coagulation.
36 710
0
#platelets#intracellular signaling#physiology

Search by keyword
#physiology

Found 2 articles