Mechanisms of Human Erythrocytes Volume Stabilization
Functional completeness of erythrocytes depends on high deformability of these cells, that allows them to pass through narrow tissue capillaries. The erythrocytes high deformability is provided due to maintenance of discoid shape with an optimal cell surface area to volume ratio. In its turn this ratio is maintained due to cell volume stabilization at a given cell surface area. In this work, using mathematical simulation, we studied role of Na/K-ATPase, calcium activated potassium channels and adenylate metabolism in human erythrocyte volume stabilization at increase in cell membrane permeability to cations. The simulation took into account a contribution of glycolytic metabolites and adenylates to cytoplasm osmotic pressure. It was shown that the presence in the cell of Na/K-ATPase and two opposite transmembrane gradients of Na+ and K+ ions provide a significantly improved cell volume stabilization at the increase in cell membrane permeability, compared with hypothetical cells, in which the osmotic balance between cell and extracellular compartment is provided due to a gradient of only one ion (Na+). In this case the erythrocyte volume deviates from the optimal value by less than 10% at change in cell membrane permeability from 50 to 200% of its normal value. In this case, however, the intracellular ion concentrations may change significantly (by several times). The adenylate metabolism system can provide an additional regulation of transport ATPases due to regulation of intracellular ATP levels. Under these conditions stabilization of steady-state values of intracellular ion concentrations (ion homeostasis) and of cell volume in the range of cell membrane permeability changes from 50 to 1500% of the normal value. In this case, however, the cell volume and intracellular ion concentrations may significantly deviate from the stabilized values during transitional processes. Simultaneous function of both, ion transport systems and adenylate metabolism allows to provide ion homeostasis and efficient erythrocyte volume stabilization (within 5% deviation from the optimal value) both in steady-state conditions and during transitional processes at increase in cell membrane permeability up to 10-15 times compared with the normal value.
Immune thrombocytopenia: what can the systems biology and systems physiology offer?
Immune thrombocytopenia (ITP) is an acquired bleeding disorder of autoimmune pathophysiology. The causes of ITP could be related to other pathology (viral, bacterial, or systemic), or ITP could develop without any apparent reason. While the immune system dysregulation mechanisms in ITP were described, its etiology remains unclear. Moreover, all existing treatment approaches are not specific for ITP, and its action is highly patient- specific. Here we describe recent findings in the origins and development of ITP and discuss novel experimental and theoretical approaches to diagnosing ITP and predicting therapy effects.
Platelet functional responses and signalling: the molecular relationship. Part 2: receptors.
Small, non-nuclear cells, platelets, are primarily designed to form aggregates when blood vessels are damaged, stopping bleeding. To perform this function, platelets can implement several functional responses induced by various agonists and coordinated by a complex network of intracellular signaling triggered by a dozen of different receptors. This review, the second in a series, describes the known intracellular signaling pathways induced by platelet receptors in response to canonical and rare agonists. Particular focus will be on interaction points and “synergy” of platelet activation pathways and intermediate or “secondary” activation mediators that transmit a signal to functional manifestations.
Overview of the neutralizing antibody and memory B cell response kinetics in SARS-CoV-2 convalescent and/or mRNA vaccinated individuals
COVID-19 pandemics triggered by the SARS-CoV-2 virus have caused millions of deaths worldwide and have led to expedited developments of various effective vaccines that, if administered, could prevent and/or circumvent the infection and reduce the death toll. Since the start of the pandemics multiple research groups around the world have been involved in the analysis of immune responses of various human cohorts to the SARS-CoV-2 infection and vaccines. Now, over 1.5 years later, the scientific community has accumulated extensive data about both the development of an immune response to SARS-CoV-2 following infection, as well as its rate of fading off. Kinetic analysis of the immune response generated by vaccines is also emerging, enabling the possibility of making comparisons and predictions. In this review we will focus on the comparing B cell and antibody immune responses to the SARS-CoV-2 infection as opposed to mRNA vaccines for the SARS-CoV-2 S-protein, which have been utilized to immunize hundreds of millions of people and analyzed in multiple studies.
A strong correlation exists between platelet consumption and platelet hyperactivation in COVID-19 patients. Pilot study of the patient cohort from CCH RAS Hospital (Troitsk).
It is known that in COVID-19, hypercoagulation and sometimes thrombocytopenia are related to disease severity. There is also controversial data on platelet participation in COVID-19 pathology. We aimed to determine the degree of platelet hyperactivation in COVID-19 patients. Whole blood flow cytometry with Annexin-V and lactadherin staining ("PS+ platelets") was utilized. Additionally, a stochastic mathematical model of platelet production and consumption was developed. Here we demonstrated that the percentage of PS+ platelets in COVID-19 patients was twofold that of healthy donors. There was a significant correlation between the amount of PS+ platelets and the percentage of lung damage in patients. No connection was found between platelet senescence and hospital therapy or patients' chronic diseases, except for chronic lung disease. Although no thrombocytopenia was observed in patients, the observed increase in platelet size (FSC-A parameter in flow cytometry) could indicate that platelet age is decreased in patients. The developed computational model of platelet turnover confirms the possibility of intense platelet consumption without noticeable changes in platelet count. We conclude that the observed platelet hyperactivation in COVID-19 could be caused by platelet activation in circulation, leading to platelet consumption without significant thrombocytopenia.
In vitro models of thrombosis and hemostasis
Abnormalities in hemostatic response are responsible for a large number of life-threatening conditions, however, despite many decades of research, today there are no reliable ways to correct hemostasis without significant risks of thrombosis or bleeding. This situation reflects a poor understanding of the key mechanisms that regulate the hemostatic response. To uncover the principles underlying the regulation of hemostasis, both experimental models and theoretical approaches are actively used. This review focuses on current in vitro models of thrombosis and hemostasis and describes key approaches and tools for studying blood coagulation outside the human/animal body. To reconstruct this process, both microfluidic technologies and approaches based on manufacturing artificial vessels using a variety of hydrogels are actively used. In vitro models of thrombosis traditionally mimic non-penetrating damage to the vessel wall and have been used for more than 30 years to uncover the key processes responsible for the formation of arterial thrombi. Models of in vitro hemostasis have been actively developed only in recent years and are focused ono crucial mechanisms governing the formation of hemostatic plugs - clots that stop bleeding upon a penetrating vascular injury. Modern in vitro models of thrombosis and hemostasis are used not only as tools for fundamental research but are also introduced into clinical practice.